Chapter 09 IP Services and Management

Outlines

- Dynamic Host Configuration Protocol (DHCP)
- Access Control Lists (ACL)
- Network Address Translation (NAT)
- Routers Password recovery

Dynamic Host Configuration Protocol (DHCP)

BOOTP vs DHCP

BOOTP and DHCP

BOOTP	DHCP
Static mappings	Dynamic mappings
Permanent assignment	Lease
Only supports four configuration parameters	Supports over 20 configuration parameters

DHCP operation

DHCP operation

DHCP Discover and Offer

The DHCP Client sends a directed IP broadcast, with a DHCP discover packet. In the simplest case, there is a DHCP server on the same segment, which will pick up this request. The server notes the GIADDR field is blank, so the client is on the same segment. The server also notes the hardware address of the client in the request packet.

DHCP Discover

DHCP operation

How Does DHCP Work?

The DHCP server picks an IP address from the available pool for that segment, as well as the other segment and global parameters. It puts them into the appropriate fields of the DHCP packet. It then uses the hardware address of A (in CHADDR) to construct an appropriate frame to send back to the client.

DHCP Discover

Configuring DHCP Step 1: Excluding IP Addresses

R1(config) #ip dhcp excluded-address low-address [high-address]

R1 (config) **#ip dhcp excluded-address 192.168.10.1 192.168.10.9** R1 (config) **#ip dhcp excluded-address 192.168.10.254**

Configuring DHCP Step 2: Configuring a DHCP Pool

R1 (config) #ip dhcp pool pool-name

R1 (config) **#ip dhcp pool LAN-POOL-1** R1 (dhcp-config) **#**

Configuring DHCP Step 3: Specific Tasks

Required Tasks	Command	
Define the address pool	network network-number [mask /prefix-length]	
Define the default router or	default-router address [address2address8]	
gateway		

Optional Tasks	Command
Define a DNS server.	dns-server address [address2address8]
Define the domain name	domain-name <i>domain</i>
Define the duration of the DHCP lease	lease { days [hours] [minutes] infinite}
Define the NetBIOS WINS server	netbios-name-server address [address2address8]

DHCP Configuration Example

R1 (config) # ip dhcp excluded-address 192.168.10.1 192.168.10.9
R1 (config) # ip dhcp excluded-address 192.168.10.254
R1 (config) # ip dhcp pool LAN-POOL-1
R1 (dhcp-config) # network 192.168.10.0 255.255.255.0
R1 (dhcp-config) # default-router 192.168.10.1
R1 (dhcp-config) # domain-name span.com
R1 (dhcp-config) # end

Access Control Lists (ACL)

What is the packet filter?

What is the packet filter?

ACL Traffic Filtering on a Router

With two interfaces and three protocols running, this router could have a total of 12 separate ACLs applied.

The three Ps for using ACLs

You can only have one ACL per protocol, per interface, and per direction:

- One ACL per protocol (e.g., IP or IPX)
- One ACL per interface (e.g., FastEthernet0/0)
- One ACL per direction (i.e., IN or OUT)

What Is an ACL?

ACLs on a Router

Inbound ACL flow chart

Outbound ACL Example

Wild Card Mask (WCM)

Wildcard Mask Example

	Decimal Address	Binary Address
IP address to be processed	192.168.10.0	11000000.10101000.00001010.00000000
Wildcard mask	0.0.255.255	0000000.0000000.11111111.11111111
Resulting IP address	192.168.0.0	11000000.10101000.00000000.00000000

Wildcard Mask Calculation - 1

Wildcard Mask Calculation - 2

255.255.255.255 - 255.255.255.000 000.000.000.255 255.255.255.255 - 255.255.255.240 000.000.000.015

Types of the Access Control List (ACL)

Types of Cisco ACLs

Standard ACLs filter IP packets based on the source address only.

access-list 10 permit 192.168.30.0 0.0.0.255

Extended ACLs filter IP packets based on several attributes, including the following:

- Source and destination IP addresses
- Source and destination TCP and UDP ports
- Protocol type (IP, ICMP, UDP, TCP, or protocol number)

access-list 103 permit tcp 192.168.30.0 0.0.0.255 any eq 80

Where to place ACL ?

- Standard ACL is placed as close the destination as possible.
- Extended ACL is placed as close the source as possible.

Access Control List configuration

- Firstly : from global configuration mode write you ACL sentences
- Secondly : apply the ACL under the interface in the appropriate direction

Configure Standard ACLs

R1(config)# access-list 1 permit 192.168.10.0 0.0.0.255 R1(config)# interface S0/0/0 R1(config-if)# ip access-group 1 out

Configure Extended ACLs

ACL 101

access-list 101 permit ip 192.168.10.0 0.0.0.255 192.168.30.0 0.0.0.255

ACL 102

access-list 102 permit ip 192.168.10.0 0.0.0.255 192.168.30.0 0.0.0.255 access-list 102 deny ip any any

Extended ACL example

Extended ACL Examples

Using port numbers

access-list 114 permit tcp 192.168.20.0 0.0.0.255 any eq 23 access-list 114 permit tcp 192.168.20.0 0.0.0.255 any eq 21

Using keywords

access-list 114 permit tcp 192.168.20.0 0.0.0.255 any eq telnet access-list 114 permit tcp 192.168.20.0 0.0.0.255 any eq ftp

Extended ACL example

Extended ACL to Deny Only Telnet from Subnet

R1 (config) #access-list 101 deny top 192.168.11.0 0.0.0.255 any eq 23 R1 (config) #access-list 101 permit ip any any

```
R1 (config) # interface Fa0/0
R1 (config-if) #ip access-group 101 out
```

Network Address Translation (NAT)

Network Address Translation

Public and Private Internet Addresses

Private Internet addresses are defined in RFC 1918:

Class	RFC 1918 Internal Address Range	CIDR Prefix
А	10.0.0.0 - 10.255.255.255	10.0.0/8
В	172.16.0.0 - 172.31.255.255	172.16.0.0/12
С	192.168.0.0 - 192.168.255.255	192.168.0.0/16

Network Address Translation

NAT Translates Private Addresses to Public Addresses

NAT benefits & drawbacks

NAT Benefits and Drawbacks

NAT Benefits

- Conserves the legally registered addressing scheme
- Increases the flexibility of connections to the public network
- Provides consistency for internal network addressing schemes.
- Provides network security

NAT Drawbacks

- Performance is degraded
- End-to-end functionality is degraded
- · End-to-end IP traceability is lost
- Tunneling is more complicated
- Initiating TCP connections can be disrupted
- Architectures need to be rebuilt to accommodate changes

NAT configuration

NAT Overload

NAT Overload Configuration Example

access-list 1 permit 192.168.0.0 0.0.255.255 ip nat inside source list 1 interface serial 0/1/0 overload interface serial 0/0/0 ip nat inside interface serial 0/1/0 ip nat outside

Routers Password recovery

Password recovery

Password recovery exact steps for routers

- 1. Connect your console to the router (password recovery can't be done using telnet, it must be done using console connection)
- 2. Turnoff the router then turn it on again
- 3. During 60 seconds of router startup \rightarrow press "control + break" buttons
- 4. You will enter the rommon mode
- 5. Change the configuration register to 0x2142 using this command :
 - 1. Confreg 0x2142
 - 2. Reset
- 6. After the router startup again, you will find that there is no configuration on it and you can access it easily without any passwords.
- 7. From privilege mode copy the startup config to running config
 - 1. Router# copy start run
 - 2. Router# conf t
 - 3. Router(config)# configuration-register 0x2102
 - 4. Router(config)# enable secret new_pass
 - 5. Router(config)# Exit
 - 6. Router# Copy run start